Some data- and compute-intensive applications can be accelerated by offloading portions of codes to platforms such as GPGPUs or FPGAs. However, to get high performance for these kernels, it is mandatory to restructure the application, to generate adequate communication mechanisms for the transfer of remote data, and to make good usage of the memory bandwidth. In the context of the high-level synthesis (HLS), from a C program, of hardware accelerators on FPGA, we show how to automatically generate optimized remote accesses for an accelerator communicating to an external DDR memory. Loop tiling is used to enable block communications, suitable for DDR memories. Pipelined communication processes are generated to overlap communications and computations, thereby hiding some latencies, in a way similar to double buffering. Finally, data reuse among tiles is exploited to avoid remote accesses when data are already available in the local memory.