2 - Seminar Meta Learning (SemMeL) - Arka Nandi - Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks/ClipID:23971 vorhergehender Clip nächster Clip

Schlüsselworte: meta learning
Die automatischen Untertitel, die mit Whisper Open AI in diesem Video-Player (und im Multistream-Video-Player) generiert werden, dienen der Bequemlichkeit und Barrierefreiheit. Es ist jedoch zu beachten, dass die Genauigkeit und Interpretation variieren können. Für mehr Informationen lesen Sie bitte die FAQs (Absatz 14)
Aufnahme Datum 2020-11-16

Kurs-Verknüpfung

Seminar Meta Learning (SemMeL)

Zugang

Frei

Sprache

Englisch

Einrichtung

Friedrich-Alexander-Universität Erlangen-Nürnberg

Produzent

Friedrich-Alexander-Universität Erlangen-Nürnberg

Today Arka Nandi presents the paper "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks"

We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.

https://arxiv.org/abs/1703.03400

Mehr Videos aus der Kategorie "Friedrich-Alexander-Universität Erlangen-Nürnberg"

2024-12-19
IdM-Anmeldung
geschützte Daten  
2024-12-19
IdM-Anmeldung
geschützte Daten  
2024-12-19
Studon
geschützte Daten  
2024-12-19
IdM-Anmeldung / Studon
geschützte Daten