12 - Seminar Meta Learning (SemMeL) - Swetha Ramesh - Learning to Compare: Relation Network for Few-Shot Learning/ClipID:29220 vorhergehender Clip nächster Clip

Schlüsselworte: meta learning
Aufnahme Datum 2021-02-01

Kurs-Verknüpfung

Seminar Meta Learning (SemMeL)

Sprache

Englisch

Einrichtung

Friedrich-Alexander-Universität Erlangen-Nürnberg

Produzent

Friedrich-Alexander-Universität Erlangen-Nürnberg

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, Timothy M. Hospedales; Learning to Compare: Relation Network for Few-Shot Learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 1199-1208

Abstract 

We present a conceptually simple, flexible, and general framework for few-shot learning, where a classifier must learn to recognise new classes given only few examples from each. Our method, called the Relation Network (RN), is trained end-to-end from scratch. During meta-learning, it learns to learn a deep distance metric to compare a small number of images within episodes, each of which is designed to simulate the few-shot setting. Once trained, a RN is able to classify images of new classes by computing relation scores between query images and the few examples of each new class without further updating the network. Besides providing improved performance on few-shot learning, our framework is easily extended to zero-shot learning. Extensive experiments on five benchmarks demonstrate that our simple approach provides a unified and effective approach for both of these two tasks.

Full Paper: https://openaccess.thecvf.com/content_cvpr_2018/html/Sung_Learning_to_Compare_CVPR_2018_paper.html

Mehr Videos aus der Kategorie "Friedrich-Alexander-Universität Erlangen-Nürnberg"

2024-12-19
IdM-Anmeldung
geschützte Daten  
2024-12-19
Studon
geschützte Daten  
2024-12-19
IdM-Anmeldung / Studon
geschützte Daten  
2024-12-18
IdM-Anmeldung
geschützte Daten