1 - Pattern Recognition Symposium PRS Winter 20/21 - Pim de Haan - Natural Graph Networks/ClipID:29979 nächster Clip

Die automatischen Untertitel, die mit Whisper Open AI in diesem Video-Player (und im Multistream-Video-Player) generiert werden, dienen der Bequemlichkeit und Barrierefreiheit. Es ist jedoch zu beachten, dass die Genauigkeit und Interpretation variieren können. Für mehr Informationen lesen Sie bitte die FAQs (Absatz 14)
Aufnahme Datum 2021-03-02

Zugang

Frei

Sprache

Englisch

Einrichtung

Friedrich-Alexander-Universität Erlangen-Nürnberg

Produzent

Friedrich-Alexander-Universität Erlangen-Nürnberg

Title: Natural Graph Networks

Bio: Pim de Haan is a second year PhD student at the University of Amsterdam and a research associate at Qualcomm AI research. Under supervision of Max Welling, he works on building machine learning methods that take into account the geometry and symmetries of the domain, using the mathematics of groups, representations and categories. Prior to his PhD, Pim was a visiting researcher at UC Berkeley's Robotics and AI Lab and obtained master's degrees in artificial intelligence in Amsterdam and in theoretical physics at the University of Cambridge.

Abstract A key requirement for graph neural networks is that they must process a graph in a way that does not depend on how the graph is described. Traditionally this has been taken to mean that a graph network must be equivariant to node permutations. Here we show that instead of equivariance, the more general concept of naturality is sufficient for a graph network to be well-defined, opening up a larger class of graph networks. We define global and local natural graph networks, the latter of which are as scalable as conventional message passing graph neural networks while being more flexible. We give one practical instantiation of a natural network on graphs which uses an equivariant message network parameterization, yielding good performance on several benchmarks.

Paper: https://arxiv.org/abs/2007.08349

This video is released under CC BY 4.0. Please feel free to share and reuse. For reminders to watch the new video follow on Twitter https://twitter.com/maier_ak or LinkedIn https://www.linkedin.com/in/andreas-maier-a6870b1a6/. Also, join our network for information about talks, videos, and job offers in our Facebook and LinkedIn Groups https://lme.tf.fau.de/lab/join-the-pattern-recognition-lab/.

Music Reference: 

Damiano Baldoni - Thinking of You (Intro) https://freemusicarchive.org/music/Damiano_Baldoni/Old_Beat/Thinking_of_you_1513
Damiano Baldoni - A Ghra (Outro) https://freemusicarchive.org/music/Damiano_Baldoni/Lost_Dinasty/A_GhrO

Mehr Videos aus der Kategorie "Friedrich-Alexander-Universität Erlangen-Nürnberg"

2025-01-20
Passwort
geschützte Daten  
2025-01-20
IdM-Anmeldung
geschützte Daten  
2025-01-21
IdM-Anmeldung / Studon
geschützte Daten  
2025-01-20
IdM-Anmeldung
geschützte Daten  
2025-01-20
Passwort / Studon
geschützte Daten