9 - Using goal-driven deep learning models to understand sensory cortex by Wooram Kang/ClipID:34007 vorhergehender Clip nächster Clip

Aufnahme Datum 2021-06-08

Sprache

Englisch

Einrichtung

Friedrich-Alexander-Universität Erlangen-Nürnberg

Produzent

Friedrich-Alexander-Universität Erlangen-Nürnberg

Fueled by innovation in the computer vision and artificial intelligence communities, recent developments in computational neuroscience have used goal-driven hierarchical convolutional neural networks (HCNNs) to make strides in modeling neural single-unit and population responses in higher visual cortical areas. In this Perspective, we review the recent progress in a broader modeling context and describe some of the key technical innovations that have supported it. We then outline how the goal-driven HCNN approach can be used to delve even more deeply into understanding the development and organization of sensory cortical processing.

Paper: https://www.nature.com/articles/nn.4244

Mehr Videos aus der Kategorie "Friedrich-Alexander-Universität Erlangen-Nürnberg"

2024-01-21
Studon
geschützte Daten  
2024-01-21
Studon
geschützte Daten  
2024-01-21
Studon
geschützte Daten  
2025-01-22
IdM-Anmeldung
geschützte Daten  
2025-01-22
IdM-Anmeldung
geschützte Daten  
2025-01-22
IdM-Anmeldung
geschützte Daten