Carola-Bibiane Schönlieb (Uni Cambridge) on "Deeply learned regularisation for inverse problems"
Inverse problems are about the reconstruction of an unknown physical quantity from indirect measurements. In imaging, they appear in a variety of places, from medical imaging, for instance MRI or CT, to remote sensing, for instance Radar, to material sciences and molecular biology, for instance electron microscopy. Here, imaging is a tool for looking inside specimen, resolving structures beyond the scale visible to the naked eye, and to quantify them. It is a mean for diagnosis, prediction and discovery.
Most inverse problems of interest are ill-posed and require appropriate mathematical treatment for recovering meaningful solutions. Classically, inversion approaches are derived almost conclusively in a knowledge driven manner, constituting handcrafted mathematical models. Examples include variational regularization methods with Tikhonov regularisation, the total variation and several sparsity-promoting regularizers such as the L1 norm of Wavelet coefficients of the solution. While such handcrafted approaches deliver mathematically rigorous and computationally robust solutions to inverse problems, they are also limited by our ability to model solution properties accurately and to realise these approaches in a computationally efficient manner.
Recently, a new paradigm has been introduced to the regularisation of inverse problems, which derives regularised solutions to inverse problems in a data driven way. Here, the inversion approach is not mathematically modelled in the classical sense, but modelled by highly over-parametrised models, typically deep neural networks, that are adapted to the inverse problems at hand by appropriately selected (and usually plenty of) training data. Current approaches that follow this new paradigm distinguish themselves through solution accuracies paired with computational efficieny that were previously unconceivable.
In this talk I will provide a glimpse into such deep learning approaches and some of their mathematical properties. I will finish with open problems and future research perspectives.