16 - Human-level concept learning presented by Kulyabin Mikhail/ClipID:35349 vorhergehender Clip nächster Clip

Aufnahme Datum 2021-07-05

Sprache

Englisch

Einrichtung

Friedrich-Alexander-Universität Erlangen-Nürnberg

Produzent

Friedrich-Alexander-Universität Erlangen-Nürnberg

People learning new concepts can often generalize successfully from just a single example, yet machine learning algorithms typically require tens or hundreds of examples to perform with similar accuracy. People can also use learned concepts in richer ways than conventional algorithms—for action, imagination, and explanation. We present a computational model that captures these human learning abilities for a large class of simple visual concepts: handwritten characters from the world’s alphabets. The model represents concepts as simple programs that best explain observed examples under a Bayesian criterion. On a challenging one-shot classification task, the model achieves human-level performance while outperforming recent deep learning approaches. We also present several “visual Turing tests” probing the model’s creative generalization abilities, which in many cases are indistinguishable from human behavior.

Paper: https://science.sciencemag.org/content/350/6266/1332

Nächstes Video

Maier, Andreas
Prof. Dr. Andreas Maier
2021-07-12
IdM-Anmeldung
Maier, Andreas
Prof. Dr. Andreas Maier
2021-07-12
IdM-Anmeldung

Mehr Videos aus der Kategorie "Friedrich-Alexander-Universität Erlangen-Nürnberg"

2024-12-19
IdM-Anmeldung
geschützte Daten  
2024-12-19
IdM-Anmeldung
geschützte Daten  
2024-12-19
IdM-Anmeldung
geschützte Daten  
2024-12-19
Studon
geschützte Daten