40 - Beyond the Patterns - Adrian Dalca - Unsupervised Learning of Image Correspondences in Medical Image Analysis/ClipID:35934 vorhergehender Clip nächster Clip

0 seconds of 0 secondsVolume 90%
Press shift question mark to access a list of keyboard shortcuts
Tastaturkürzel
Shortcuts Open/Close/ or ?
Spielen/PauseLeertaste
Lautstärke Erhöhen
Lautstärke Verringern
Vorwärts Springen
Rückwärts Springen
Untertitel An/Ausc
Vollbild/Vollbild Beendenf
Summ Schalten/Stummschaltung Deaktivierenm
Decrease Caption Size-
Increase Caption Size+ or =
Gehe zu %0-9
00:00
00:00
00:00
 
Schlüsselworte: beyond the patterns
Die automatischen Untertitel, die mit Whisper Open AI in diesem Video-Player (und im Multistream-Video-Player) generiert werden, dienen der Bequemlichkeit und Barrierefreiheit. Es ist jedoch zu beachten, dass die Genauigkeit und Interpretation variieren können. Für mehr Informationen lesen Sie bitte die FAQs (Absatz 14)
Aufnahme Datum 2021-07-30

Kurs-Verknüpfung

Beyond the Patterns

Zugang

Frei

Sprache

Englisch

Einrichtung

Lehrstuhl für Informatik 5 (Mustererkennung)

Produzent

Friedrich-Alexander-Universität Erlangen-Nürnberg

I am very glad to announce Adrian Dalca as an invited speaker at our lab!

Abstract: Image registration is fundamental to many tasks in image analysis. Classical image registration methods have undergone decades of technical development, but are often prohibitively slow since they solve an optimization problem for each 3D image pair. In this talk, I will introduce various models that leverage learning paradigms to enable deformable medical image registration more accurately and substantially faster than traditional methods, crucially enabling new research directions and applications. Based on these models I will discuss a learning framework for building deformable templates, which play a fundamental role in these analyses. This learning approach to template construction can yield a new class of on-demand conditional templates, enabling new analysis. I will also present recent or ongoing models, such as modality-invariant learning-based registration methods that work on unseen test-time contrasts, and hyperparameter-agnostic learning for image registration that removes the need to train different models for different hyperparameters.

Short Bio: Adrian V. Dalca is Assistant Professor at Harvard Medical School, and research scientist at the Massachusetts Institute of Technology. He obtained his PhD from CSAIL, MIT, and his research focuses on probabilistic models and machine learning techniques to capture relationships between medical images, clinical diagnoses, and other complex medical data. His work spans medical image analysis, computer vision, machine learning and computational biology. He received his BS and MS in Computer Science from the University of Toronto.

This video is released under CC BY 4.0. Please feel free to share and reuse.

For reminders to watch the new video follow on Twitter or LinkedIn. Also, join our network for information about talks, videos, and job offers in our Facebook and LinkedIn Groups.

Music Reference: 
Damiano Baldoni - Thinking of You (Intro)
Damiano Baldoni - Poenia (Outro)

Mehr Videos aus der Kategorie "Technische Fakultät"

2025-01-07
Studon
geschützte Daten  
2025-01-08
Frei
freie Daten  
2025-01-07
IdM-Anmeldung
geschützte Daten  
2024-12-19
Studon
geschützte Daten  
2024-12-20
Studon
geschützte Daten