2020 1.8 - BRDF-Reconstruction in Photogrammetry Studio Setups/ClipID:37961 vorhergehender Clip nächster Clip

Die automatischen Untertitel, die mit Whisper Open AI in diesem Video-Player (und im Multistream-Video-Player) generiert werden, dienen der Bequemlichkeit und Barrierefreiheit. Es ist jedoch zu beachten, dass die Genauigkeit und Interpretation variieren können. Für mehr Informationen lesen Sie bitte die FAQs (Absatz 14)
Aufnahme Datum 2021-11-13

Kurs-Verknüpfung

FAU Visual Computing

Zugang

Frei

Sprache

Englisch

Einrichtung

Lehrstuhl für Informatik 9 (Graphische Datenverarbeitung)

Produzent

Friedrich-Alexander-Universität Erlangen-Nürnberg

, , :
BRDF-Reconstruction in Photogrammetry Studio Setups
IEEE Winter Conference on Applications of Computer Vision (WACV) 2020 (Aspen, Colorado, USA, March 1, 2020 - March 5, 2020)
Open Access: http://openaccess.thecvf.com/content_WACV_2020/papers/Innmann_BRDF-Reconstruction_in_Photogrammetry_Studio_Setups_WACV_2020_paper.pdf
BibTeX: Download

Photogrammetry Studios are a common setup to acquire high-quality 3D geometry from different kinds of real-world objects, humans, etc. In a photo studio like setup, 50 -200 DSLR cameras are used with object-specific illumination to simultaneously capture images that are processed by algorithms that automatically estimate the camera parameters and detailed geometry. These steps are automated in established pipelines to a large extent and do not require much user input. However, the post-processing typically involves a manual estimation of surface reflectance parameters by an artist, who paints textures to allow for photorealistic rendering. While professional light stages facilitate this process in an automated way, these setups are very expensive and require accurately calibrated light sources and cameras. In our work, we present a new formulation along with a practical solution to reduce these constraints to photo studio like setups by jointly reconstructing the geometric configuration of the lights along with spatially varying surface reflectance properties and its diffuse albedo. In the presented synthetic as well as real-world experiments, we analyze the effect of different optimization objectives and show that our method is able to provide photorealistic reconstruction results with an RMSE of ≈ 1 - 3% on real data.

Nächstes Video in Kapitel

Allgemein_Mann(Dummy)
Prof. Dr. Marc Stamminger
2021-11-14
Frei
Allgemein_Mann(Dummy)
Prof. Dr. Marc Stamminger
2021-11-15
Frei
Allgemein_Mann(Dummy)
Prof. Dr. Marc Stamminger
2021-11-09
Frei

Mehr Videos aus der Kategorie "Technische Fakultät"

2025-01-16
Studon
geschützte Daten  
2025-01-20
Studon
geschützte Daten  
2025-01-20
IdM-Anmeldung
geschützte Daten  
2025-01-16
Frei
freie Daten