2020 1.9 - Neural Denoising for Path Tracing of Medical Volumetric Data/ClipID:37962 vorhergehender Clip nächster Clip

Die automatischen Untertitel, die mit Whisper Open AI in diesem Video-Player (und im Multistream-Video-Player) generiert werden, dienen der Bequemlichkeit und Barrierefreiheit. Es ist jedoch zu beachten, dass die Genauigkeit und Interpretation variieren können. Für mehr Informationen lesen Sie bitte die FAQs (Absatz 14)
Aufnahme Datum 2021-11-13

Kurs-Verknüpfung

FAU Visual Computing

Zugang

Frei

Sprache

Englisch

Einrichtung

Lehrstuhl für Informatik 9 (Graphische Datenverarbeitung)

Produzent

Friedrich-Alexander-Universität Erlangen-Nürnberg

In this paper, we transfer machine learning techniques previously applied to denoising surface-only Monte Carlo renderings to path-traced visualizations of medical volumetric data. In the domain of medical imaging, path-traced videos turned out to be an efficient means to visualize and understand internal structures, in particular for less experienced viewers such as students or patients. However, the computational demands for the rendering of high-quality path-traced videos are very high due to the large number of samples necessary for each pixel. To accelerate the process, we present a learning-based technique for denoising path-traced videos of volumetric data by increasing the sample count per pixel; both through spatial (integrating neighboring samples) and temporal filtering (reusing samples over time). Our approach uses a set of additional features and a loss function both specifically designed for the volumetric case. Furthermore, we present a novel network architecture tailored for our purpose, and introduce reprojection of samples to improve temporal stability and reuse samples over frames. As a result, we achieve good image quality even from severely undersampled input images, as visible in the teaser image.

Nächstes Video in Kapitel

Allgemein_Mann(Dummy)
Prof. Dr. Marc Stamminger
2021-11-14
Frei
Allgemein_Mann(Dummy)
Prof. Dr. Marc Stamminger
2021-11-15
Frei
Allgemein_Mann(Dummy)
Prof. Dr. Marc Stamminger
2021-11-09
Frei

Mehr Videos aus der Kategorie "Technische Fakultät"

2024-11-15
Studon
geschützte Daten  
2024-11-13
Studon
geschützte Daten  
2024-11-13
IdM-Anmeldung
geschützte Daten  
2024-11-14
Studon
geschützte Daten  
2024-11-13
Passwort / Studon
geschützte Daten