2020 1.11 - NRMVS: Non-Rigid Multi-View Stereo/ClipID:38037 vorhergehender Clip nächster Clip

Die automatischen Untertitel, die mit Whisper Open AI in diesem Video-Player (und im Multistream-Video-Player) generiert werden, dienen der Bequemlichkeit und Barrierefreiheit. Es ist jedoch zu beachten, dass die Genauigkeit und Interpretation variieren können. Für mehr Informationen lesen Sie bitte die FAQs (Absatz 14)
Aufnahme Datum 2021-11-15

Kurs-Verknüpfung

FAU Visual Computing

Zugang

Frei

Sprache

Englisch

Einrichtung

Lehrstuhl für Informatik 9 (Graphische Datenverarbeitung)

Produzent

Friedrich-Alexander-Universität Erlangen-Nürnberg

Multi-view Stereo (MVS) is a common solution in photogrammetry applications for the dense reconstruction of a static scene from images. The static scene assumption, however, limits the general applicability of MVS algorithms, as many day-to-day scenes undergo non-rigid motion, e.g., clothes, faces, or human bodies. In this paper, we open up a new challenging direction: Dense 3D reconstruction of scenes with non-rigid changes observed from a small number of images sparsely captured from different views with a single monocular camera, which we call non-rigid multi-view stereo (NRMVS) problem. We formulate this problem as a joint optimization of deformation and depth estimation, using deformation graphs as the underlying representation. We propose a new sparse 3D to 2D matching technique with a dense patch-match evaluation scheme to estimate the most plausible deformation field satisfying depth and photometric consistency. We show that a dense reconstruction of a scene with non-rigid changes from a few images is possible, and demonstrate that our method can be used to interpolate novel deformed scenes from various combinations of deformation estimates derived from the sparse views.

Mehr Videos aus der Kategorie "Technische Fakultät"

2025-01-21
Studon
geschützte Daten  
2025-01-21
Studon
geschützte Daten  
2025-01-20
Studon
geschützte Daten  
2025-01-20
IdM-Anmeldung
geschützte Daten  
2025-01-20
Passwort / Studon
geschützte Daten