Date: Fri. September 20, 2024
Event: FAU MoD Lecture
Event type: On-site / Online
Organized by: FAU MoD, the Research Center for Mathematics of Data at Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)
FAU MoD Lecture: Thoughts on Machine Learning
Speaker: Prof. Dr. Rupert Klein
Affiliation: Mathematik & Informatik, Freie Universität Berlin (Germany)
Abstract. Techniques of machine learning (ML) find a rapidly increasing range of applications touching upon social, economic, and technological aspects of everyday life. They are also being used with great enthusiasm to fill in gaps in our scientific knowledge by data-based modelling approaches. I have followed these developments for a while with interest, concern, and mounting disappointment. When these technologies are employed to take over decisive functionality in safety-critical applications, we would like to exactly know how to guarantee their compliance with pre-defined guardrails and limitations. Moreover, when they are utilized as building blocks in scientific research, it would violate scientific standards -in my opinion- if these building blocks were used without a throrough understanding of their functionality, including inaccuracies, uncertainties, and other pitfalls. In this context, I will juxtapose (a subset of) deep neural network methods with the family of entropy-optimal Sparse Probabilistic Approximation (sSPA) techniques developed recently by Illia Horenko (RPTU Kaiserslautern-Landau) and colleagues.
See more details of this FAU MoD lecture at:
https://mod.fau.eu/fau-mod-lecture-thoughts-on-machine-learning/