77 - NHR PerfLab Seminar 2025-01-15: Efficient and Robust Hardware for Neural Networks/ClipID:55969 vorhergehender Clip

Die automatischen Untertitel, die mit Whisper Open AI in diesem Video-Player (und im Multistream-Video-Player) generiert werden, dienen der Bequemlichkeit und Barrierefreiheit. Es ist jedoch zu beachten, dass die Genauigkeit und Interpretation variieren können. Für mehr Informationen lesen Sie bitte die FAQs (Absatz 14)
Aufnahme Datum 2025-01-15

Kurs-Verknüpfung

HPC4FAU / NHR@FAU

Lehrende(r)

Dr. Georg Hager

Zugang

Frei

Sprache

Deutsch

Einrichtung

Zentrum für Nationales Hochleistungsrechnen Erlangen (NHR@FAU)

Produzent

Zentrum für Nationales Hochleistungsrechnen Erlangen (NHR@FAU)

Speaker: Prof. Dr. Grace Li Zhang, Technische Universität Darmstadt

Slides

Abstract:

The last decade has witnessed significant breakthroughs of deep neural networks (DNNs) in many fields. These breakthroughs have been achieved at extremely high computation and memory costs. Accordingly, the increasing complexity of DNNs has led to a quest for efficient hardware platforms. In this talk, class-aware pruning is first presented to reduce the number of multiply-and-accumulate (MAC) operations in DNNs. Class-exclusion early-exit is then examined to reveal the target class before the last layer is reached. To accelerate DNNs, digital accelerators such as systolic arrays from Google can be used. Such an accelerator is composed of an array of processing elements to efficiently execute MAC operations in parallel. However, such accelerators suffer from high energy consumption. To reduce energy consumption of MAC operations, we select quantized weight values with good power and timing characteristics. To reduce energy consumption incurred by data movement, the logic design of neural networks is presented. Analog In-Memory-Computing platform based on RRAM crossbars will also be discussed. In the end, ongoing research topics and future research plans will be summarized.

For a list of past and upcoming NHR PerfLab seminar events, see: https://hpc.fau.de/research/nhr-perfl...

Mehr Videos aus der Kategorie "Friedrich-Alexander-Universität Erlangen-Nürnberg Zentralbereich"

2025-01-14
IdM-Anmeldung
geschützte Daten  
2025-01-14
IdM-Anmeldung / Studon
geschützte Daten  
2025-01-13
Passwort
geschützte Daten  
2025-01-13
IdM-Anmeldung
geschützte Daten  
2025-01-13
IdM-Anmeldung / Studon
geschützte Daten