Die behandelten Themen bauen auf den Stoff von Algebra des Programmierens auf und vertieft diesen.
Folgende weiterführende Themen werden behandelt:
-
Kategorie der CPOs; insbesondere freie CPOs, Einbettungen/Projektionen, Limes-Kolimes-Koinzidenz
-
Lokal stetige Funktoren und deren kanonische Fixpunkte; Lösung rekursiver Bereichsgleichungen insbesondere Modell des ungetyptes Lambda-Kalküls
-
freie Konstruktionen, universelle Pfeile und adjungierte Funktoren
-
Äquivalenzfunktoren
-
Monaden: Eilenberg-Moore und Kleisli-Kategorien; Freie Monaden; Becks Satz
-
evtl. Distributivgesetze, verallgemeinerte Potenzmengenkonstruktion und abstrakte GSOS-Regeln
-
evtl. Algebren und Monaden für Iteration
Lernziele und Kompetenzen:
- Fachkompetenz
-
- Verstehen
- Die Studierenden erklären grundlegende Begriffe und Konzepte der Kategorientheorie und beschreiben Beispiele. Sie erklären außerdem grundlegende kategorielle Ergebnisse.
- Anwenden
- Die Studierenden wenden kategorientheoretische Konzepte und Ergebnisse an, um semantische Modelle für Programmiersprachen und Spezifikationsformalismen aufzustellen.
- Analysieren
- Die Studierenden analysieren kategorientheoretische Beweise, dieskutieren die entsprechende Argumentationen und legen diese schriftlich klar nieder.
- Lern- bzw. Methodenkompetenz
- Die Studieren lesen und verstehen Fachliteratur, die die Sprache der Kategorientheorie benutzt.
Sie sind in der Lage entsprechende mathematische Argumentationen nachzuvollziehen, zu erklären und selbst zu führen und schriftlich darzus