Unter Organic Computing (OC) versteht man den Entwurf und den Einsatz von selbst-organisierenden Systemen, die sich den jeweiligen Umgebungsbedürfnissen dynamisch anpassen. Diese Systeme zeichnen sich dadurch aus, dass sie die sog. Self-*-Eigenschaft besitzen, d.h. sie sind selbst-konfigurierend, selbst-optimierend, selbst-heilend, selbst-schützend, selbst-erklärend, ...
Als Vorbild für solche technischen Systeme werden Strukturen und Methoden biologischer und anderer natürlicher Systeme gewählt.
Literatur:
- Ch. Müller-Schloer, Ch. von der Malsburg, R. P. Würt. Organic Computing. Informatik-Spektrum, Band 27, Nummer 4, S. 332-336. (LINK)
-
I. C. Trelea. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85 (2003) 317-325. (LINK)
-
J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM 46 (1999) 604-632. (LINK)
-
M. Dorigo. V. Maniezzo. A Colorni. Ant system: an autocatalytic optimizing process. Technical Report 91-016, Politecnico di Milano, 1991. (LINK)
-
A. Badr. A. Fahmy. A proof of convergence for Ant algorithms. Information Sciences 160 (2004) 267-279.
-
M. Clerc. J. Kennedy. The particle swarm - Explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 8 (2002) 58-73.