Deep Learning 2019/2020 /KursID:849
- Letzter Beitrag vom 2020-02-04
Schlüsselworte: signals Unit approximation introduction reconstruction tasks dataset batch box research visualization confidence activations backpropagation search dependencies maps pooling auxiliary task

Einrichtung

Lehrstuhl für Informatik 14 (Bild- und Sprachverarbeitung)

Aufzeichnungsart

Vorlesungsreihe

Zugang

Frei

Sprache

Deep Learning (DL) has attracted much interest in a wide range of applications such as image recognition, speech recognition and artificial intelligence, both from academia and industry. This lecture introduces the core elements of neural networks and deep learning, it comprises:
  • (multilayer) perceptron, backpropagation, fully connected neural networks

  • loss functions and optimization strategies

  • convolutional neural networks (CNNs)

  • activation functions

  • regularization strategies

  • common practices for training and evaluating neural networks

  • visualization of networks and results

  • common architectures, such as LeNet, Alexnet, VGG, GoogleNet

  • recurrent neural networks (RNN, TBPTT, LSTM, GRU)

  • deep reinforcement learning

  • unsupervised learning (autoencoder, RBM, DBM, VAE)

  • generative adversarial networks (GANs)

  • weakly supervised learning

  • applications of deep learning (segmentation, object detection, speech recognition, ...)

The accompanying exercises will provide a deeper understanding of the workings and architecture of neural networks.

Zugehörige Einzelbeiträge

Folge
Titel
Lehrende(r)
Aktualisiert
Zugang
Dauer
Medien
1
Deep Learning
Dr.-Ing. Vincent Christlein
2019-10-15
Frei
01:08:08
2
Deep Learning
Prof. Dr. Andreas Maier
2019-10-29
Frei
01:24:10
3
Deep Learning
Prof. Eva Katharina Breininger
2019-11-05
Frei
01:23:24
4
Deep Learning
Prof. Eva Katharina Breininger
2019-11-12
Frei
01:18:45
5
Deep Learning
Prof. Dr. Andreas Maier
2019-11-19
Frei
01:05:49
6
Deep Learning
Prof. Dr. Andreas Maier
2019-11-26
Frei
01:19:38
7
Deep Learning
Prof. Dr. Andreas Maier
2019-12-03
Frei
01:03:29
8
Deep Learning
Prof. Dr. Andreas Maier
2019-12-10
Frei
00:31:30
9
Deep Learning
Prof. Dr. Andreas Maier
2019-12-17
Frei
01:22:31
10
Deep Learning
Prof. Dr. Andreas Maier
2020-01-07
Frei
01:25:55
11
Deep Learning
Prof. Dr. Andreas Maier
2020-01-14
Frei
01:17:39
12
Deep Learning
Prof. Dr. Andreas Maier
2020-01-21
Frei
01:10:46
13
Deep Learning
Prof. Eva Katharina Breininger
2020-01-28
Frei
01:17:03
14
Deep Learning
Prof. Dr. Andreas Maier
2020-02-04
Frei
01:09:30

Mehr Kurse von Prof. Dr. Andreas Maier

Maier, Andreas
Prof. Dr. Andreas Maier
Vorlesung
2020-10-13
IdM-Anmeldung
Hornegger1
Prof. Dr. Andreas Maier
Vorlesung
2012-02-07
Frei
Hornegger1
Prof. Dr. Andreas Maier
Vorlesung
2013-02-05
Frei
Schloss1
Prof. Dr. Andreas Maier
Vorlesung
2023-02-02
Frei / IdM-Anmeldung

Mehr Kurse aus der Kategorie "Technische Fakultät"

Schloss1
Prof. Dr. Dirk Schubert
Vorlesung
2021-07-12
Studon
Schloss1
Prof. Dr. Bernhard Egger
2024-03-08
Frei
Schloss1
Prof. Dr. Dietmar Drummer
Vorlesung
2020-07-20
Passwort
Schloss1
PD Dr. Lars Zigan
Vorlesung
2020-07-20
Studon
Kreis, Oliver
Dr.-Ing. Oliver Kreis
Vorlesung
2018-10-11
Studon