18 - Beyond the Patterns - Dr. Mike Kestemont - Ecology and Cultural Heritage: Modelling the Historic Survival of Books and Authors with Unseen Species Models/ClipID:30129 vorhergehender Clip nächster Clip

Schlüsselworte: beyond the patterns
Die automatischen Untertitel, die mit Whisper Open AI in diesem Video-Player (und im Multistream-Video-Player) generiert werden, dienen der Bequemlichkeit und Barrierefreiheit. Es ist jedoch zu beachten, dass die Genauigkeit und Interpretation variieren können. Für mehr Informationen lesen Sie bitte die FAQs (Absatz 14)
Aufnahme Datum 2021-03-10

Kurs-Verknüpfung

Beyond the Patterns

Zugang

Frei

Sprache

Englisch

Einrichtung

Lehrstuhl für Informatik 5 (Mustererkennung)

Produzent

Friedrich-Alexander-Universität Erlangen-Nürnberg

Dr. Mike Kestemont is a long-term collaborator of FAU with respect to Digital Humanities. We finally managed to get him for an invited presentation on his latest research:

Abstract: In this talk, I will report on recent advances in applying quantitative methods from ecology to data from the cultural heritage domain, in particular historic literature. With biodiversity under global threat, ecologists rely on unseen species models to monitor species richness and account for the unobserved species in a sample. I hope to demonstrate that similar bias mitigation strategies are useful in the historic study of culture, which is prone to survivorship bias in the face of the incomplete survival of sources. In collaborative work, we have applied established estimators from ecology to model the loss of chivalric narrative fiction from medieval Europe, including the well-known courtly romances about King Arthur. In more recent work, we explore to which other kinds of heritage data these methods can be applied, such as the number of premodern authors that were not saved from oblivion. This work has been carried out with multiple co-authors, in particular dr. Folgert Karsdorp (Meertens Institute Amsterdam), who will be duly credited in the talk.

Short Bio: Mike Kestemont, PhD, is associate research professor in the department of Literature at the University of Antwerp (Belgium). He specializes in computational text analysis for the Computational Humanities. His work has a strong focus on historic literature and his previous research has covered a wide range of topics in literary history, including classical, medieval, early modern and modernist texts. Together with Folgert Karsdorp and Allen Riddell he has just published a textbook on data science for the Humanities with Princeton University Press. Mike recently took up an interest in ecology and how its quantitative methods can be meaningfully applied in the study of culture. Mike lives in Brussels (www.mike-kestemont.org), tweets in English (@Mike_Kestemont) and codes in Python (https://github.com/mikekestemont).

M. Kestemont & F. Karsdorp, 'Estimating the Loss of Medieval Literature with an Unseen Species model from Ecodiversity'. Computational Humanities Research Workshop. Amsterdam [online], 18-20 november 2020. https://zenodo.org/record/4030681#.YElLeC1XYUE

Humanities Data Analysis: Case Studies With Python, Folgert Karsdorp, Mike Kestemont, and Allen Riddell. A practical guide to data-intensive humanities research using the Python programming language. https://press.princeton.edu/books/hardcover/9780691172361/humanities-data-analysis

Novels by Mike Kestemont:

De zwarte koning, https://www.amazon.de/zwarte-koning-Michael-Kestemont/dp/9401458685
De witte weduwe, https://www.amazon.de/-/en/Michael-Kestemont/dp/9401467870

This video is released under CC BY 4.0. Please feel free to share and reuse.

For reminders to watch the new video follow on Twitter or LinkedIn. Also, join our network for information about talks, videos, and job offers in our Facebook and LinkedIn Groups.

Music Reference: 
Damiano Baldoni - Thinking of You (Intro)
Damiano Baldoni - Poenia (Outro)

 

Mehr Videos aus der Kategorie "Technische Fakultät"

2024-11-20
Studon
geschützte Daten  
2024-11-20
IdM-Anmeldung
geschützte Daten  
2024-11-20
Studon
geschützte Daten  
2024-11-19
Passwort / Studon
geschützte Daten  
2024-11-19
Studon
geschützte Daten