15 - An Introduction to Generative Modeling/ClipID:33290 vorhergehender Clip nächster Clip

Die automatischen Untertitel, die mit Whisper Open AI in diesem Video-Player (und im Multistream-Video-Player) generiert werden, dienen der Bequemlichkeit und Barrierefreiheit. Es ist jedoch zu beachten, dass die Genauigkeit und Interpretation variieren können. Für mehr Informationen lesen Sie bitte die FAQs (Absatz 14)
Aufnahme Datum 2021-05-18

Zugang

Frei

Sprache

Englisch

Einrichtung

Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)

Produzent

Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)

Lars Ruthotto (Emory University) on "An Introduction to Generative Modeling":

Deep generative models (DGM) are neural networks with many hidden layers trained to approximate complicated, high-dimensional probability distributions from a finite number of samples. When trained successfully, we can use the DGMs to estimate the likelihood of each observation and to create new samples from the underlying distribution. Developing DGMs has become one of the most hotly researched fields in artificial intelligence in recent years. The literature on DGMs has become vast and is growing rapidly.
Some advances have even reached the public sphere, for example, the recent successes in generating realistic-looking images, voices, or movies; so-called deep fakes.
Despite these successes, several mathematical and practical issues limit the broader use of DGMs: given a specific dataset, it remains challenging to design and train a DGM and even more challenging to find out why a particular model is or is not effective. To help students contribute to this field, this talk provides an introduction to DGMs and provides a concise mathematical framework for modeling the three most popular approaches: normalizing flows (NF), variational autoencoders (VAE), and generative adversarial networks (GAN). We illustrate the advantages and disadvantages of these basic approaches using numerical experiments. Our goal is to enable and motivate the reader to contribute to this proliferating research area. Our presentation also emphasizes relations between generative modeling and optimal transport.

Mehr Videos aus der Kategorie "Naturwissenschaftliche Fakultät"

2024-11-15
IdM-Anmeldung
geschützte Daten  
2024-11-15
IdM-Anmeldung
geschützte Daten  
2024-11-14
Studon
geschützte Daten  
2024-11-13
Studon
geschützte Daten  
2024-11-13
Studon
geschützte Daten  
2024-11-13
IdM-Anmeldung
geschützte Daten