16 - Random walks and PDEs in graph-based learning/ClipID:33507 vorhergehender Clip nächster Clip

Die automatischen Untertitel, die mit Whisper Open AI in diesem Video-Player (und im Multistream-Video-Player) generiert werden, dienen der Bequemlichkeit und Barrierefreiheit. Es ist jedoch zu beachten, dass die Genauigkeit und Interpretation variieren können. Für mehr Informationen lesen Sie bitte die FAQs (Absatz 14)
Aufnahme Datum 2021-05-25

Zugang

Frei

Sprache

Englisch

Einrichtung

Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)

Produzent

Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)

Jeff Calder (Uni Minnesota) on  "Random walks and PDEs in graph-based learning":

 

I will discuss some applications of random walks and PDEs in graph-based learning, both for theoretical analysis and algorithm development. Graph-based learning is a field within machine learning that uses similarities between datapoints to create efficient representations of high-dimensional data for tasks like semi-supervised classification, clustering and dimension reduction. There has been considerable interest recently in semi-supervised learning problems with very few labeled examples (e.g., 1 label per class). The widely used Laplacian regularization is ill-posed at low label rates and gives very poor classification results. In the first part of the talk, we will use the random walk interpretation of the graph Laplacian to precisely characterize the lowest label rate at which Laplacian regularized semi-supervised learning is well-posed. At lower label rates, where Laplace learning performs poorly, we will show how our random walk analysis leads to a new algorithm, called Poisson learning, that is probably more stable and informative than Laplace learning. We will conclude with some applications of Poisson learning to image classification and mesh segmentation of broken bone fragments of interest in anthropology.

Mehr Videos aus der Kategorie "Naturwissenschaftliche Fakultät"

2025-01-21
Studon
geschützte Daten  
2025-01-20
IdM-Anmeldung
geschützte Daten  
2025-01-17
Studon
geschützte Daten  
2025-01-17
IdM-Anmeldung
geschützte Daten  
2025-01-16
Studon
geschützte Daten