9 - Machine Learning approaches to Classical Many‐Body Systems in (Non‐)Equilibrium/ClipID:52274 vorhergehender Clip nächster Clip

Aufnahme Datum 2024-07-10

Sprache

Englisch

Einrichtung

Friedrich-Alexander-Universität Erlangen-Nürnberg

Produzent

Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract:

Classical many-body systems comprise everyday liquids, colloidal systems or almost everything in the realm of soft matter. In equilibrium, all properties can be deduced from the one-body density profile (the space-dependent probability for finding a particle). This is guaranteed by the therorems of Density Functional Theory (DFT), but one needs the functional of the free energy to put DFT to work. For many systems, even very simple ones, this functional is not known.
I discuss recent advances and perspectives on finding these functionals using methods of Machine Learning (ML) and try to build a bridge also to the quantum DFT problem where similar developments are in progress. Also, the general classical nonequilibrium problem can be put in a functional form (power functional theory), and the likewise unknown functional of dissipated power should be learnable by ML methods.

Nächstes Video

Schloss1
Prof. Dr. Riccardo Comin
2024-07-17
IdM-Anmeldung

Mehr Videos aus der Kategorie "Friedrich-Alexander-Universität Erlangen-Nürnberg"

2024-12-16
Studon
geschützte Daten  
2024-12-16
IdM-Anmeldung / Studon
geschützte Daten  
2024-12-16
IdM-Anmeldung
geschützte Daten  
2024-12-16
IdM-Anmeldung / Studon
geschützte Daten  
2024-12-16
IdM-Anmeldung / Passwort / Studon
geschützte Daten  
2024-12-17
IdM-Anmeldung / Passwort / Studon
geschützte Daten