3 - FAU MoD Lecture: New avenues for the interaction of computational mechanics and machine learning/ClipID:55483 vorhergehender Clip nächster Clip

Die automatischen Untertitel, die mit Whisper Open AI in diesem Video-Player (und im Multistream-Video-Player) generiert werden, dienen der Bequemlichkeit und Barrierefreiheit. Es ist jedoch zu beachten, dass die Genauigkeit und Interpretation variieren können. Für mehr Informationen lesen Sie bitte die FAQs (Absatz 14)
Aufnahme Datum 2024-10-24

Kurs-Verknüpfung

FAU MoD Lectures 2024/25

Zugang

Frei

Sprache

Englisch

Einrichtung

Friedrich-Alexander-Universität Erlangen-Nürnberg

Produzent

Friedrich-Alexander-Universität Erlangen-Nürnberg

Date: Thu. October 24, 2024
Event: FAU MoD Lecture
Event type: On-site / Online
Organized by: FAU MoD, the Research Center for Mathematics of Data at Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)

FAU MoD Lecture: New avenues for the interaction of computational mechanics and machine learning
Speaker: Prof. Dr. Paolo Zunino
Affiliation: MOX, Politecnico di Milano (Italy)

Abstract. Neural networks and learning algorithms have gained substantial attention among researchers engaged in computational mechanics. Notably, there are well-established methodologies for employing these tools in solving mathematical models based on partial differential equations. Additionally, a significant overlap exists between the machine learning and computational science and engineering communities in the realm of data-driven reduced order models. After reviewing the main trends in this field, we will discuss novel emerging approaches such as the application of learning algorithms to expedite the resolution of linear systems or to foster the approximation of multiscale problems.

See more details of this FAU MoD lecture at:

https://mod.fau.eu/fau-mod-lecture-new-avenues-for-the-interaction-of-computational-mechanics-and-machine-learning/

 

 

 

 

Mehr Videos aus der Kategorie "Friedrich-Alexander-Universität Erlangen-Nürnberg"

2024-11-19
Passwort / Studon
geschützte Daten  
2024-11-20
Studon
geschützte Daten  
2024-11-19
Studon
geschützte Daten  
2024-11-19
Studon
geschützte Daten