Deep Learning - Plain Version 2020 /KursID:1384
- Letzter Beitrag vom 2020-07-10
Schlüsselworte: Perceptron Introduction artificial intelligence deep learning machine learning pattern recognition

Einrichtung

Lehrstuhl für Informatik 5 (Mustererkennung)

Aufzeichnungsart

Vorlesungsreihe

Zugang

Frei

Sprache

 

Deep Learning (DL) has attracted much interest in a wide range of applications such as image recognition, speech recognition, and artificial intelligence, both from academia and industry. This lecture introduces the core elements of neural networks and deep learning, it comprises:
  • (multilayer) perceptron, backpropagation, fully connected neural networks

  • loss functions and optimization strategies

  • convolutional neural networks (CNNs)

  • activation functions

  • regularization strategies

  • common practices for training and evaluating neural networks

  • visualization of networks and results

  • common architectures, such as LeNet, Alexnet, VGG, GoogleNet

  • recurrent neural networks (RNN, TBPTT, LSTM, GRU)

  • deep reinforcement learning

  • unsupervised learning (autoencoder, RBM, DBM, VAE)

  • generative adversarial networks (GANs)

  • weakly supervised learning

  • applications of deep learning (segmentation, object detection, speech recognition, ...)

The accompanying exercises will provide a deeper understanding of the workings and architecture of neural networks.

 

Zugehörige Einzelbeiträge

Folge
Titel
Lehrende(r)
Aktualisiert
Zugang
Dauer
Medien
1
Deep Learning - Introduction Part 1
Prof. Dr. Andreas Maier
2020-05-27
Frei
00:15:10
2
Deep Learning - Introduction Part 2
Prof. Dr. Andreas Maier
2020-05-27
Frei
00:17:39
3
Deep Learning - Introduction Part 3
Prof. Dr. Andreas Maier
2020-05-27
Frei
00:07:55
4
Deep Learning - Introduction Part 4
Prof. Dr. Andreas Maier
2020-05-27
Frei
00:13:30
5
Deep Learning - Introduction Part 5
Prof. Dr. Andreas Maier
2020-05-27
Frei
00:05:57
6
Deep Learning - Feedforward Networks Part 1
Prof. Dr. Andreas Maier
2020-05-28
Frei
00:17:38
7
Deep Learning - Feedforward Networks Part 2
Prof. Dr. Andreas Maier
2020-05-28
Frei
00:11:22
8
Deep Learning - Feedforward Networks Part 3
Prof. Dr. Andreas Maier
2020-05-28
Frei
00:18:37
9
Deep Learning - Feedforward Networks Part 4
Prof. Dr. Andreas Maier
2020-05-28
Frei
00:09:18
10
Deep Learning - Loss and Optimization Part 1
Prof. Dr. Andreas Maier
2020-05-29
Frei
00:14:48
11
Deep Learning - Loss and Optimization Part 2
Prof. Dr. Andreas Maier
2020-05-30
Frei
00:17:50
12
Deep Learning - Loss and Optimization Part 3
Prof. Dr. Andreas Maier
2020-05-30
Frei
00:22:16
13
Deep Learning - Activations, Convolutions, and Pooling Part 1
Prof. Dr. Andreas Maier
2020-05-30
Frei
00:09:30
14
Deep Learning - Activations, Convolutions, and Pooling Part 2
Prof. Dr. Andreas Maier
2020-05-30
Frei
00:11:35
15
Deep Learning - Activations, Convolutions, and Pooling Part 3
Prof. Dr. Andreas Maier
2020-05-30
Frei
00:15:30
16
Deep Learning - Activations, Convolutions, and Pooling Part 4
Prof. Dr. Andreas Maier
2020-05-30
Frei
00:08:48
17
Deep Learning - Regularization Part 1
Prof. Dr. Andreas Maier
2020-05-30
Frei
00:10:35
18
Deep Learning - Regularization Part 2
Prof. Dr. Andreas Maier
2020-05-31
Frei
00:13:38
19
Deep Learning - Regularization Part 3
Prof. Dr. Andreas Maier
2020-05-31
Frei
00:09:18
20
Deep Learning - Regularization Part 4
Prof. Dr. Andreas Maier
2020-05-31
Frei
00:09:26
21
Deep Learning - Regularization Part 5
Prof. Dr. Andreas Maier
2020-05-31
Frei
00:06:23
22
Deep Learning - Common Practices Part 1
Prof. Dr. Andreas Maier
2020-05-31
Frei
00:10:53
23
Deep Learning - Common Practices Part 2
Prof. Dr. Andreas Maier
2020-05-31
Frei
00:08:57
24
Deep Learning - Common Practices Part 3
Prof. Dr. Andreas Maier
2020-06-01
Frei
00:05:09
25
Deep Learning - Common Practices Part 4
Prof. Dr. Andreas Maier
2020-06-01
Frei
00:12:14
26
Deep Learning - Architectures Part 1
Prof. Dr. Andreas Maier
2020-06-02
Frei
00:16:03
27
Deep Learning - Architectures Part 2
Prof. Dr. Andreas Maier
2020-06-02
Frei
00:09:45
28
Deep Learning - Architectures Part 3
Prof. Dr. Andreas Maier
2020-06-02
Frei
00:12:49
29
Deep Learning - Architectures Part 4
Prof. Dr. Andreas Maier
2020-06-02
Frei
00:07:34
30
Deep Learning - Architectures Part 5
Prof. Dr. Andreas Maier
2020-06-03
Frei
00:07:07
31
Deep Learning - Recurrent Neural Networks Part 1
Prof. Dr. Andreas Maier
2020-06-06
Frei
00:10:38
32
Deep Learning - Recurrent Neural Networks Part 2
Prof. Dr. Andreas Maier
2020-06-06
Frei
00:15:33
33
Deep Learning - Recurrent Neural Networks Part 3
Prof. Dr. Andreas Maier
2020-06-06
Frei
00:09:32
34
Deep Learning - Recurrent Neural Networks Part 4
Prof. Dr. Andreas Maier
2020-06-06
Frei
00:09:06
35
Deep Learning - Recurrent Neural Networks Part 5
Prof. Dr. Andreas Maier
2020-06-06
Frei
00:12:46
36
Deep Learning - Visualization Part 1
Prof. Dr. Andreas Maier
2020-06-09
Frei
00:11:58
37
Deep Learning - Visualization Part 2
Prof. Dr. Andreas Maier
2020-06-09
Frei
00:17:14
38
Deep Learning - Visualization Part 3
Prof. Dr. Andreas Maier
2020-06-09
Frei
00:09:59
39
Deep Learning - Visualization Part 4
Prof. Dr. Andreas Maier
2020-06-09
Frei
00:19:46
40
Deep Learning - Visualization Part 5
Prof. Dr. Andreas Maier
2020-06-09
Frei
00:23:26
41
Deep Learning - Reinforcement Learning Part 1
Prof. Dr. Andreas Maier
2020-06-14
Frei
00:15:18
42
Deep Learning - Reinforcement Learning Part 2
Prof. Dr. Andreas Maier
2020-06-14
Frei
00:14:14
43
Deep Learning - Reinforcement Learning Part 3
Prof. Dr. Andreas Maier
2020-06-14
Frei
00:17:39
44
Deep Learning - Reinforcement Learning Part 4
Prof. Dr. Andreas Maier
2020-06-14
Frei
00:07:28
45
Deep Learning - Reinforcement Learning Part 5
Prof. Dr. Andreas Maier
2020-06-14
Frei
00:18:48
46
Deep Learning - Unsupervised Learning Part 1
Prof. Dr. Andreas Maier
2020-06-21
Frei
00:17:36
47
Deep Learning - Unsupervised Learning Part 2
Prof. Dr. Andreas Maier
2020-06-21
Frei
00:19:50
48
Deep Learning - Unsupervised Learning Part 3
Prof. Dr. Andreas Maier
2020-06-21
Frei
00:11:26
49
Deep Learning - Unsupervised Learning Part 4
Prof. Dr. Andreas Maier
2020-06-21
Frei
00:09:05
50
Deep Learning - Unsupervised Learning Part 5
Prof. Dr. Andreas Maier
2020-06-21
Frei
00:18:09
51
Deep Learning - Segmentation and Object Detection Part 1
Prof. Dr. Andreas Maier
2020-06-28
Frei
00:14:16
52
Deep Learning - Segmentation and Object Detection Part 2
Prof. Dr. Andreas Maier
2020-06-28
Frei
00:14:24
53
Deep Learning - Segmentation and Object Detection Part 3
Prof. Dr. Andreas Maier
2020-06-28
Frei
00:13:52
54
Deep Learning - Segmentation and Object Detection Part 4
Prof. Dr. Andreas Maier
2020-06-28
Frei
00:08:11
55
Deep Learning - Segmentation and Object Detection Part 5
Prof. Dr. Andreas Maier
2020-06-28
Frei
00:07:13
56
Deep Learning - Weakly and Self-Supervised Learning Part 1
Prof. Dr. Andreas Maier
2020-07-05
Frei
00:12:13
57
Deep Learning - Weakly and Self-Supervised Learning Part 2
Prof. Dr. Andreas Maier
2020-07-05
Frei
00:04:40
58
Deep Learning - Weakly and Self-Supervised Learning Part 3
Prof. Dr. Andreas Maier
2020-07-05
Frei
00:15:55
59
Deep Learning - Weakly and Self-Supervised Learning Part 4
Prof. Dr. Andreas Maier
2020-07-05
Frei
00:15:17
60
Deep Learning - Graph Deep Learning Part 1
Prof. Dr. Andreas Maier
2020-07-10
Frei
00:11:07
61
Deep Learning - Graph Deep Learning Part 2
Prof. Dr. Andreas Maier
2020-07-10
Frei
00:10:45
62
Deep Learning - Known Operator Learning Part 1
Prof. Dr. Andreas Maier
2020-07-10
Frei
00:07:57
63
Deep Learning - Known Operator Learning Part 2
Prof. Dr. Andreas Maier
2020-07-10
Frei
00:10:58
64
Deep Learning - Known Operator Learning Part 3
Prof. Dr. Andreas Maier
2020-07-10
Frei
00:16:52
65
Deep Learning - Known Operator Learning Part 4
Prof. Dr. Andreas Maier
2020-07-10
Frei
00:24:50

Mehr Kurse von Prof. Dr. Andreas Maier

Maier, Andreas
Prof. Dr. Andreas Maier
Vorlesung
2016-06-21
Frei
Maier, Andreas
Prof. Dr. Andreas Maier
Vorlesung
2021-07-15
IdM-Anmeldung
Schloss1
Prof. Dr. Andreas Maier
Vorlesung
2023-02-02
Frei / IdM-Anmeldung
Maier, Andreas
Prof. Dr. Andreas Maier
Vorlesung
2020-02-04
Frei