- Fehleranalyse (Gleitpunktdarstellung, Rundung, Fehlerfortpflanzung, Kondition, Gutartigkeit)
- Polynominterpolation (Dividierte Differenzen, Interpolationsfehler)
- Asymptotische Entwicklungen und Extrapolation (Richardson-Extrapolation)
- Numerische Integration (Newton-Cotes-Formel, Romberg-Integration, Gaußsche Integration)
- Lineare Gleichungssysteme (Gaußscher Algorithmus, LR-Zerlegung, Cholesky-Zerlegung, Matrixnormen, Fehlerabschätzungen)
- Nichtlineare Gleichungssysteme (Fixpunktsätze, Konvergenzordnungsbegriffe, Newton-Verfahren, iterative Verfahren für LGS)
- Lineare Ausgleichsrechnung
- etc.