Machine Learning for Engineers I 2021/2022 /KursID:2361
- Letzter Beitrag vom 2022-02-16
Schlüsselworte: machine learning

Einrichtung

Lehrstuhl für Maschinelles Lernen und Datenanalytik

Aufzeichnungsart

Vorlesungsreihe

Zugang

Studon

Sprache

This course offers an overview of some of the most widely used machine learning (ML) methods that are required for solving data science problems. We present the necessary fundamental for each topic and provide programming exercises. The course includes:

  • The common practices for data pre-processing.
  • Teaching different tasks regarding regression, classification, and dimensionality reduction using methods including but not limited to linear regression and classification, Support vector machines and Deep neural networks.
  • Introduction to Python programming for data science.
  • Applying machine learning models on real world engineering applications

Kurskapitel

Folge
Titel
Lehrende(r)
Aktualisiert
Zugang
Dauer
Medien
1
Lecture 1: Organizational Information
Prof. Dr. Björn Eskofier
2021-04-14
Studon
00:05:56
2
Lecture 1: Motivation
Prof. Dr. Björn Eskofier
2021-04-14
Studon
00:20:17
3
Lecture 1: Machine Learning Types
Prof. Dr. Björn Eskofier
2021-04-14
Studon
00:28:56
4
Lecture 1: Machine Learning Pipeline
Prof. Dr. Björn Eskofier
2021-04-14
Studon
00:14:12
5
Lecture 1: Summary
Prof. Dr. Björn Eskofier
2021-04-15
Studon
00:02:30
Folge
Titel
Lehrende(r)
Aktualisiert
Zugang
Dauer
Medien
6
Lecture 2: Motivation
Prof. Dr. Björn Eskofier
2021-04-27
Studon
00:10:26
7
Lecture 2: Linear Regression - Overall Picture
Prof. Dr. Björn Eskofier
2021-04-27
Studon
00:04:44
8
Lecture 2: Linear Regression - Model
Prof. Dr. Björn Eskofier
2021-04-27
Studon
00:13:16
9
Lecture 2: Linear Regression - Optimization
Prof. Dr. Björn Eskofier
2021-04-27
Studon
00:26:43
25
Lecture 2: Linear Regression - Basis Functions
Prof. Dr. Björn Eskofier
2021-06-21
Studon
00:10:59
26
Lecture 2: Logistic Regression - Motivation
Prof. Dr. Björn Eskofier
2021-06-21
Studon
00:06:14
27
Lecture 2: Logistic Regression - Framework
Prof. Dr. Björn Eskofier
2021-06-21
Studon
00:14:54
28
Lecture 2: Overfitting and Underfitting
Prof. Dr. Björn Eskofier
2021-06-21
Studon
00:12:08
Folge
Titel
Lehrende(r)
Aktualisiert
Zugang
Dauer
Medien
10
Lecture 3: Problem Statement
Prof. Dr. Björn Eskofier
2021-05-11
Studon
00:11:43
11
Lecture 3: Optimization
Prof. Dr. Björn Eskofier
2021-05-11
Studon
00:12:50
12
Lecture 3: Kernel Trick
Prof. Dr. Björn Eskofier
2021-05-11
Studon
00:18:10
13
Lecture 3: Hard and Soft Margin
Prof. Dr. Björn Eskofier
2021-05-11
Studon
00:06:43
14
Lecture 3: Regression
Prof. Dr. Björn Eskofier
2021-05-11
Studon
00:07:35
15
Lecture 3: Summary
Prof. Dr. Björn Eskofier
2021-05-11
Studon
00:03:43
Folge
Titel
Lehrende(r)
Aktualisiert
Zugang
Dauer
Medien
16
Lecture 4: Intuition
Prof. Dr. Björn Eskofier
2021-05-25
Studon
00:07:14
17
Lecture 4: Mathematics
Prof. Dr. Björn Eskofier
2021-05-25
Studon
00:12:26
18
Lecture 4: Applications
Prof. Dr. Björn Eskofier
2021-05-25
Studon
00:10:52
19
Lecture 4: Summary
Prof. Dr. Björn Eskofier
2021-05-25
Studon
00:03:00
Folge
Titel
Lehrende(r)
Aktualisiert
Zugang
Dauer
Medien
20
Lecture 5: Perceptron
Prof. Dr. Björn Eskofier
2021-06-08
Studon
00:09:28
21
Lecture 5: Multilayer Perceptron
Prof. Dr. Björn Eskofier
2021-06-08
Studon
00:07:41
22
Lecture 5: Loss Function
Prof. Dr. Björn Eskofier
2021-06-08
Studon
00:10:38
23
Lecture 5: Gradient Descent
Prof. Dr. Björn Eskofier
2021-06-08
Studon
00:10:03
24
Lecture 5: Learning Process
Prof. Dr. Björn Eskofier
2021-06-08
Studon
00:07:05
29
Lecture 5: Convolution
Prof. Dr. Björn Eskofier
2021-06-21
Studon
00:10:31
30
Lecture 5: Pooling
Prof. Dr. Björn Eskofier
2021-06-21
Studon
00:08:03
31
Lecture 5: Applications
Prof. Dr. Björn Eskofier
2021-06-21
Studon
00:06:05
Folge
Titel
Lehrende(r)
Aktualisiert
Zugang
Dauer
Medien
31
Question Session "Introduction to Machine Learning"
Prof. Dr. Björn Eskofier
2021-11-10
Studon
00:12:52
32
Question Session "Linear and Logistic Regression"
Prof. Dr. Björn Eskofier
2021-12-01
Studon
00:33:35
33
Question Session "Support Vector Machine"
Prof. Dr. Björn Eskofier
2021-12-15
Studon
00:00:00
33
Question Session "Support Vector Machine"
Prof. Dr. Björn Eskofier
2021-12-15
Studon
00:23:25
34
Question Session "Principal Component Analysis"
Prof. Dr. Björn Eskofier
2022-01-12
Studon
00:50:31
35
Question Session "Deep Learning"
Prof. Dr. Björn Eskofier
2022-02-02
Studon
00:47:13
36
Final Question Session
Prof. Dr. Björn Eskofier
2022-02-16
Studon
01:27:41

Mehr Kurse von Prof. Dr. Björn Eskofier

EFI-Lectures
Prof. Dr. Björn Eskofier
2020-02-03
Frei
Eskofier, Björn
Prof. Dr. Björn Eskofier
Vorlesung
2022-12-01
Studon
Eskofier, Björn
Prof. Dr. Björn Eskofier
Vorlesung
2016-07-11
IdM-Anmeldung
Eskofier, Björn
Prof. Dr. Björn Eskofier
Vorlesung
2013-02-05
Frei
Eskofier, Björn
Prof. Dr. Björn Eskofier
Vorlesung
2019-07-11
Passwort